[深度学习概念]·深度学习简介
我们生活在这样一个世界:无论好坏,我们总是被深度学习算法所包围。从社交网络过滤到自动驾驶汽车,再到电影推荐,金融欺诈检测,药物发现……深度学习影响着我们的生活和决策。 在这一文章中,将尽可能简单易懂地解释这些概念:深度学习,人工神经网络,卷积神经网络,梯度下降等。
我们生活在这样一个世界:无论好坏,我们总是被深度学习算法所包围。从社交网络过滤到自动驾驶汽车,再到电影推荐,金融欺诈检测,药物发现……深度学习影响着我们的生活和决策。 在这一文章中,将尽可能简单易懂地解释这些概念:深度学习,人工神经网络,卷积神经网络,梯度下降等。
使用了全连接,卷积神经网络与循环神经网络分别实现了.使用Word2Vec与RNN(LSTM)做文本情感分析(机器如何读懂人心)
本文主要是利用图片的形式,详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、Attention机制。希望这篇文章能够提供一个全新的视角,帮助初学者更好地入门。
许多技术文章都关注于二维卷积神经网络(2D CNN)的使用,特别是在图像识别中的应用。而一维卷积神经网络(1D CNNs)只在一定程度上有所涉及,比如在自然语言处理(NLP)中的应用。目前很少有文章能够提供关于如何构造一维卷积神经网络来解决你可能正面临的一些机器学习问题。本文试图补上这样一个短板。
当我们听说卷积神经网络(CNN)时,我们通常会想到计算机视觉。CNN负责图像分类方面的重大突破,是目前大多数计算机视觉系统的核心,从Facebook的自动照片标签到自动驾驶汽车。
曾经听过一句话,”Feature为主,Ensemble为后”。Feature决定了模型效果的上限,而Ensemble就是让你更接近这个上限。Ensemble讲究“好而不同”,不同是指模型的学习到的侧重面不一样。举个直观的例子,比如数学考试,A的函数题做的比B好,B的几何题做的比A好,那么他们合作完成的分数通常比他们各自单独完成的要高。